3 research outputs found

    USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds

    Get PDF
    Ubiquitin-specific protease 6 (USP6) is a deubiquitylase that is overexpressed by chromosome translocation in two human neoplasms, aneurysmal bone cyst and nodular fasciitis. The relevant substrates of this ubiquitin-specific protease are not clear. Here, we identify the Wnt receptor Frizzled (Fzd) as a key target of the USP6 oncogene. Increased expression of USP6 increases the membrane abundance of Fzd, and hence increases cellular sensitivity to Wnts. USP6 opposes the activity of the ubiquitin ligase and tumor suppressor ring finger protein 43 (RNF43). This study identifies a new mechanism for pathological Wnt pathway activation in human disease and suggests a new approach to regulate Wnt activity therapeutically

    A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures

    Get PDF
    MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available
    corecore